Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
J Pharm Pharmacol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666699

RESUMO

OBJECTIVE: Quanzhen Yiqi decoction (QZYQ) is a traditional Chinese medicine for treating chronic obstructive pulmonary disease. METHODS: Mice were exposed to cigarette smoke (CS) 6 days/week (40 cigarettes/day) for 24 weeks and then intragastrically administered QZYQ (4.72, 9.45, or 18.89 g/kg) or dexamethasone (DEX, 0.6 mg/kg) for 6 weeks. We examined the lung function and collected bronchoalveolar lavage fluid for inflammatory cell and cytokine quantification. The pathological lung changes, ROS and oxidative biomarkers were measured. We used immunohistochemistry and western blotting to evaluate the levels of Nrf2/HO-1, NLRP3/ASC/Caspase1/IL-1ß/IL-18. RESULTS: The CS group showed significant increases in the forced vital capacity, lung resistance, and chord compliance and a lower FEV50/FVC compared with the control, and QZYQ improved these changes. In addition, QZYQ effectively reduced emphysema, immune cell infiltration, and airway remodeling. QZYQ stimulated HO-1 expression and reduced oxidative stress through the Nrf2 pathway. QZYQ inhibited the production of NLRP3/ASC/Caspase-1 to inhibit IL-1ß and IL-18. CONCLUSION: Our study suggested that QZYQ can improve the function and histology of the lungs and reduce inflammatory cell recruitment. QZYQ inhibits ROS production and NLRP3 inflammasome activation by upregulating Nrf2 to reduce lung injury. The anti-inflammatory effects of QZYQ are similar to those of DEX.

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607177

RESUMO

Covalent organic frameworks (COFs) have been widely used in photocatalytic hydrogen peroxide (H2O2) production due to their favorable band structure and excellent light absorption. Due to the rapid recombination rate of charge carriers, however, their applications are mainly restricted. This study presents the design and development of two highly conjugated triazine-based COFs (TBP-COF and TTP-COF) and evaluates their photocatalytic H2O2 production performance. The nitrogen-rich structures and high degrees of conjugation of TBP-COF and TTP-COF facilitate improved light absorption, promote O2 adsorption, enhance their redox power, and enable the efficient separation and transfer of photogenerated charge carriers. There is thus an increase in the photocatalytic activity for the production of H2O2. When exposed to 10 W LED visible light irradiation at a wavelength of 420 nm, the pyridine-based TTP-COF produced 4244 µmol h-1 g-1 of H2O2 from pure water in the absence of a sacrificial agent. Compared to TBP-COF (1882 µmol h-1 g-1), which has a similar structure but lacks pyridine sites, TTP-COF demonstrated nearly 2.5 times greater efficiency. Furthermore, it exhibited superior performance compared to most previously published nonmetal COF-based photocatalysts.

3.
Food Chem X ; 22: 101344, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38595757

RESUMO

To identify the key odorants in Amomum tsaoko (AT), volatiles in fresh AT (FAT) and dried AT (DAT) were investigated using molecular sensory science. In addition to this, the sensomics approach was used to confirm the presence of the compound in FAT that contributed the most to its aroma profile. A total of 49 odor-active compounds (43 in FAT and 42 in DAT) with flavor dilution (FD) factors ranging from 1 to 6561 were identified, with eucalyptol exhibiting the highest FD factor of 6561. Odorants with FD factors ≥ 27 were quantitated, and 23 and 20 compounds in FAT and DAT, respectively, with odor activity value ≥ 1 were determined as key odorants. Recombination and omission experiment further indicated that (E)-2-dodecenal, geranial, octanal, (E)-2-octenal, (E)-2-decenal, and eucalyptol contributed significantly to the overall aroma profile of FAT. After drying of FAT, the concentrations of aldehydes decreased significantly, whereas those of terpene hydrocarbons increased. Multivariate statistical analysis revealed that 26 FAT and 23 DAT odorants were biomarker compounds.

4.
Anal Chem ; 96(15): 5878-5886, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560891

RESUMO

Gas chromatography-mass spectrometry (GC-MS) is one of the most important instruments for analyzing volatile organic compounds. However, the complexity of real samples and the limitations of chromatographic separation capabilities lead to coeluting compounds without ideal separation. In this study, a Transformer-based automatic resolution method (GCMSFormer) is proposed to resolve mass spectra from GC-MS peaks in an end-to-end manner, predicting the mass spectra of components directly from the raw overlapping peaks data. Furthermore, orthogonal projection resolution (OPR) was integrated into GCMSFormer to resolve minor components. The GCMSFormer model was trained, validated, and tested using 100,000 augmented data. It achieves 99.88% of the bilingual evaluation understudy (BLEU) value on the test set, significantly higher than the 97.68% BLEU value of the baseline sequence-to-sequence model long short-term memory (LSTM). GCMSFormer was also compared with two nondeep learning resolution tools (MZmine and AMDIS) and two deep learning resolution tools (PARAFAC2 with DL and MSHub/GNPS) on a real plant essential oil GC-MS data set. Their resolution results were compared on evaluation metrics, including the number of compounds resolved, mass spectral match score, correlation coefficient, explained variance, and resolution speed. The results demonstrate that GCMSFormer has better resolution performance, higher automation, and faster resolution speed. In summary, GCMSFormer is an end-to-end, fast, fully automatic, and accurate method for analyzing GC-MS data of complex samples.

6.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611904

RESUMO

In recent years, caffeic acid and its derivatives have received increasing attention due to their obvious physiological activities and wide distribution in nature. In this paper, to clarify the status of research on plant-derived caffeic acid and its derivatives, nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds were collected from scientific databases (SciFinder, PubMed and China Knowledge). According to different types of substituents, 17 caffeic acid and its derivatives can be divided into the following classes: caffeoyl ester derivatives, caffeyltartaric acid, caffeic acid amide derivatives, caffeoyl shikimic acid, caffeoyl quinic acid, caffeoyl danshens and caffeoyl glycoside. Generalization of their 13C-NMR and 1H-NMR data revealed that acylation with caffeic acid to form esters involves acylation shifts, which increase the chemical shift values of the corresponding carbons and decrease the chemical shift values of the corresponding carbons of caffeoyl. Once the hydroxyl group is ester, the hydrogen signal connected to the same carbon shifts to the low field (1.1~1.6). The biosynthetic pathways were summarized, and it was found that caffeic acid and its derivatives are first synthesized in plants through the shikimic acid pathway, in which phenylalanine is deaminated to cinnamic acid and then transformed into caffeic acid and its derivatives. The purpose of this review is to provide a reference for further research on the rapid structural identification and biofabrication of caffeic acid and its derivatives.


Assuntos
Vias Biossintéticas , Ácidos Cafeicos , Ácido Chiquímico , Carbono , Ésteres , Espectroscopia de Ressonância Magnética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38430176

RESUMO

This study utilizes network pharmacology analysis to investigate the components, targets, and pathways involved in the treatment of chronic heart failure (CHF) with the combination of "Astragali Radix-Cassia Twig-Poria." The TCMSP, GeneCards, OMIM, PharmGkb, TTD, and DrugBank databases were utilized to identify the active ingredients and targets of this combination for CHF. Protein interactions were derived from the STRING database, and Cytoscape was used to construct the "drug-component-target-disease" network and protein interactions network. The GO function and KEGG signaling pathway were enriched, and molecular docking was performed to verify the stability of the core components and their targets. The study identified 41 active ingredients, 101 targets (including 94 related to CHF), 9 core targets, and 26 core ingredients of "Astragali Radix-Cassia Twig-Poria." Additionally, 1444 GO entries and 140 KEGG pathways (including 36 related to CHF) were found. Molecular docking results confirmed the binding ability of the combination to core targets. Overall, this study provides valuable insights into the key components, targets, and pathways involved in the treatment of CHF with "Astragali Radix-Cassia Twig-Poria," contributing to further research on its pharmacological effects.

8.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Assuntos
Mastite , Prunella , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Leite/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Espectrometria de Massas em Tandem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , Flavonoides/farmacologia
9.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547196

RESUMO

Although preclinical and clinical studies have shown that exercise can inhibit bone metastasis progression, the mechanism remains poorly understood. Here, we found that non-small cell lung cancer (NSCLC) cells adjacent to bone tissue had a much lower proliferative capacity than the surrounding tumor cells in patients and mice. Subsequently, it was demonstrated that osteocytes, sensing mechanical stimulation generated by exercise, inhibit NSCLC cell proliferation and sustain the dormancy thereof by releasing small extracellular vesicles with tumor suppressor micro-RNAs, such as miR-99b-3p. Furthermore, we evaluated the effects of mechanical loading and treadmill exercise on the bone metastasis progression of NSCLC in mice. As expected, mechanical loading of the tibia inhibited the bone metastasis progression of NSCLC. Notably, bone metastasis progression of NSCLC was inhibited by moderate exercise, and combinations with zoledronic acid had additive effects. Moreover, exercise preconditioning effectively suppressed bone metastasis progression. This study significantly advances the understanding of the mechanism underlying exercise-afforded protection against bone metastasis progression.


Assuntos
Neoplasias Ósseas , Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Osteócitos/fisiologia , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
10.
Cancer Immunol Immunother ; 73(5): 81, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554184

RESUMO

Poliovirus receptor-related immunoglobulin domain-containing protein, or PVRIG, is a newly discovered immune checkpoint that has emerged as a promising target for cancer immunotherapy. It is primarily expressed on activated T and natural killer (NK) cells, and once engaged with its ligand, PVRL2, it induces inhibitory signaling in T cells, thereby promoting the functional exhaustion of tumor-infiltrating lymphocytes (TILs). Here, we characterized IBI352g4a, a novel humanized anti-PVRIG antibody with Fc-competent function, explored the mechanism of its antitumor activity in preclinical models, and systemically evaluated the contribution of FcrR engagement to PVRIG blockade-induced antitumor activity. IBI352g4a binds to the extracellular domain of human PVRIG with high affinity (Kd = 0.53 nM) and specificity, and fully blocks the interaction between PVRIG and its ligand PVRL2. Unlike other immune checkpoints, IBI352g4a significantly induced NK cell activation and degranulation, but had a minimal effect on T-cell activation in in vitro functional assays. IBI352g4a induced strong antitumor effect in several preclinic models, through in vivo mechanism analysis we found that both NK and T cells contribute to the antitumor effect, but NK cells play predominant roles. Specifically, a single dose of IBI352g4a induced significant NK cell activation in TILs, but T-cell activation was observed only after the second dose. Moreover, the Fc effector function is critical for both NK cell activation and treatment efficacy in vitro and in vivo. Our study, for the first time, demonstrates that both NK activation and FcrR engagement are required for antitumor efficacy induced by PVRIG blockade.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Ligantes , Imunoterapia , Linfócitos do Interstício Tumoral , Neoplasias/metabolismo
12.
iScience ; 27(3): 109224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439954

RESUMO

Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.

13.
Int J Pharm ; 653: 123901, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38368969

RESUMO

While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.


Assuntos
Nanopartículas , Vacinas , Adjuvantes de Vacinas , Adjuvantes Imunológicos , Emulsões , Esqualeno/química , Nanopartículas/química
14.
Food Res Int ; 178: 113948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309909

RESUMO

Serving temperature plays a crucial role in influencing the sensory experience of consumers. In this context, this study investigated the influence of serving temperature on the aroma release and perception of a typical fermented alcoholic beverage named Huangjiu. A quantitative sensory description analysis was conducted, determining serving temperature significantly influenced the 17 sensory attributes in both semi-dry and semi-sweet Huangjiu. The variation in the contents of 41 volatiles in the Huangjiu with temperature was investigated using gas chromatography-ion mobility spectrometry, resulting in volatile content significantly increasing above 30 ℃. The partial least squares discriminant analysis was conducted to predict the variable importance for the projection (VIP) of volatiles, and 22 volatiles (VIP > 1) were screened. These 22 volatiles were confirmed as key odorants influenced by serving temperature though aroma addition experiments. The findings would provide a reference for the effects of serving temperature on the flavor perception of fermented alcoholic beverages.


Assuntos
Bebidas Alcoólicas , Odorantes , Odorantes/análise , Temperatura , Cromatografia Gasosa-Espectrometria de Massas , Bebidas Alcoólicas/análise , Percepção
15.
Mol Biol Rep ; 51(1): 309, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372835

RESUMO

OBJECTIVE: The aim of this study is to examine and evaluate the impact of benzene poisoning on the relative content of the mitochondrial MT-ND1 gene and telomere length in individuals with occupational chronic benzene poisoning (CBP) compared to a control group. The study will analyze and gather data on the mitochondrial gene content and telomere length in cases of benzene poisoning, and investigate the relationship with blood routine parameters in order to contribute scientific experimental data for the prevention and treatment of CBP. METHOD: The case group comprised 30 individuals diagnosed with occupational chronic benzene poisoning, whereas the control group consisted of 60 healthy individuals who underwent physical examinations at our hospital concurrently. Blood routine indicators were detected and analyzed, and the PCR method was employed to measure changes in mitochondrial MT-ND1 content and telomere length. Subsequently, a comparison and analysis of the aforementioned indicators was conducted. RESULT: The case group exhibited a higher mitochondrial gene content (median 366.2, IQR 90.0 rate) compared to the control group (median 101.5, IQR 12.0 rate), with a statistically significant difference between the two groups (P < 0.05). Additionally, the case group demonstrated lower white blood cell levels (3.78 ± 1.387 × 109/L) compared to the control group (5.74 ± 1.41 × 109/L), with a significant difference between the two groups (P < 0.05). Furthermore, the case group displayed lower red blood cell levels (3.86 ± 0.65 × 1012/L) compared to the control group (4.89 ± 0.65 × 1012/L), with a significant difference between the two groups (P < 0.05). The hemoglobin level in the case group (113.33 ± 16.34 g/L) was lower than that in the control group (138.22 ± 13.22 g/L). There was a significant difference between the two groups (P < 0.05). Platelet levels in the case group (153.80 ± 58.31 × 109/L) is smaller than the control group (244.92 ± 51.99 × 109/L), there was a significant difference between the two groups (P < 0.05). The average telomere length of the normal control group was 1.451 ± 0.475 (rate); The mean telomere length of individuals in the case group diagnosed with benzene poisoning was determined to be 1.237 ± 0.457 (rate). No significant correlation was observed between telomere length and three blood routine parameters, namely white blood cells (WBC), hemoglobin (HB), and platelets (PLT). However, a significant correlation was found between telomere length and red blood cell count (RBC). Additionally, a negative correlation was observed between mitochondrial gene content and white blood cell count (r = - 0.314, P = 0.026), as well as between mitochondrial gene content and red blood cell count (r = - 0.226, P = 0.032). Furthermore, a negative correlation was identified between mitochondrial gene content and hemoglobin (r = - 0.314, P = 0.028), and platelets (r = - 0.445, P = 0.001). CONCLUSION: Individuals diagnosed with occupational chronic benzene poisoning exhibit a reduction in telomere length and an elevation in the relative content of the mitochondrial MT-ND1 gene. Moreover, a negative correlation is observed between the content of the mitochondrial MT-ND1 gene and four blood routine parameters, namely white blood cells (WBC), red blood cells (RBC), hemoglobin (HB), and platelets (PLT). Consequently, benzene exposure may potentially contribute to the onset of premature aging.


Assuntos
Benzeno , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA/genética , Leucócitos , Hemoglobinas , Telômero/genética
16.
ACS Omega ; 9(5): 5452-5462, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343992

RESUMO

The practically infinite chemical and morphological space of polymers makes them pervasive with applications in materials science but challenges the rational discovery of new materials with favorable properties. Polymer informatics aims to accelerate materials design through property prediction and large-scale virtual screening. In this study, a new method (Lieconv-Tg) has been developed to predict glass-transition temperature (Tg) values from repeating units of polymers based on Lieconv, which is equivariant with transformations from any specified Lie group. The introduction of equivariance allows the prediction of molecular properties from their 3D structures, independent of orientation and position. A total of 27,659 homopolymers with Tg values were collected from PolyInfo, and a standard data set containing 7166 polymers (named data set_Tg) was created for training a robust Lieconv-Tg model. Using the 3D coordinates as input, Lieconv-Tg performs better than Edge-Conditioned Convolution (ECC), and the mean absolute error (MAE) is significantly reduced by ∼6 from ∼30 to ∼24 on both the validation set and the test set, and the R2 value for both the validation set and the test set can reach 0.90. Lieconv-Tg is thus used to screen promising candidates from a benchmark database named PI1M with 995,800 generated polymers. However, there are some implausible repeating units in PI1M. To get more reasonable candidates from PI1M, a new filtering method has been accomplished by utilizing Morgan fingerprints at the polymerization points (MF@PP) of repeating units in data set_Tg. The combination of a standard data set, Lieconv-Tg, and a more reasonable screening strategy provides new directions in materials design for polymers.

17.
J Med Chem ; 67(4): 2667-2689, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348819

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) has been considered as a potential anticancer target due to FGF19/FGFR4 mediated aberrant signaling in hepatocellular carcinoma (HCC). Several FGFR4 inhibitors have been reported, but none have gained approval. Herein, a series of 5-formyl-pyrrolo[3,2-b]pyridine-3-carboxamides and a series of 6-formylpyridyl ureas were characterized as selective reversible-covalent FGFR4 inhibitors. The representative 6-formylpyridyl urea 8z exhibited excellent potency against FGFR4WT, FGFR4V550L, and FGFR4V550M with IC50 values of 16.3, 12.6, and 57.3 nM, respectively. It also potently suppressed proliferation of Ba/F3 cells driven by FGFR4WT, FGFR4V550L, and FGFR4V550M, and FGFR4-dependent Hep3B and Huh7 HCC cells, with IC50 values of 1.2, 13.5, 64.5, 15.0, and 20.4 nM, respectively. Furthermore, 8z displayed desirable microsomal stability and significant in vivo efficacy in the Huh7 HCC cancer xenograft model in nude mice. The study provides a promising new lead for anticancer drug discovery directed toward overcoming FGFR4 gatekeeper mutation mediated resistance in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Ureia/farmacologia , Ureia/uso terapêutico , Camundongos Nus , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
18.
Angew Chem Int Ed Engl ; 63(12): e202316394, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248139

RESUMO

Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.


Assuntos
Lisina , Fosfotransferases , Animais , Humanos , Lisina/química , Ligação Proteica , Espectrometria de Massas , Catálise , Mamíferos/metabolismo
19.
Adv Healthc Mater ; : e2302926, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273674

RESUMO

The successful treatment of persistent and recurrent endodontic infections hinges upon the eradication of residual microorganisms within the root canal system, which urgently needs novel drugs to deliver potent yet gentle antimicrobial effects. Antibacterial photodynamic therapy (aPDT) is a promising tool for root canal infection management. Nevertheless, the hypoxic microenvironment within the root canal system significantly limits the efficacy of this treatment. Herein, a nanohybrid drug, Ce6/CaO2 /ZIF-8@polyethylenimine (PEI), is developed using a bottom-up strategy to self-supply oxygen for enhanced aPDT. PEI provides a positively charged surface, which enables precise targeting of bacteria. CaO2 reacts with H2 O to generate O2 , which alleviates the hypoxia in the root canal and serves as a substrate for Ce6 under 660 nm laser irradiation, leading to the successful eradication of planktonic Enterococcus faecalis (E. faecalis) and biofilm in vitro and, moreover, the effective elimination of mature E. faecalis biofilm in situ within the root canal system. This smart design offers a viable alternative for mitigating hypoxia within the root canal system to overcome the restricted efficacy of photosensitizers, providing an exciting prospect for the clinical management of persistent endodontic infection.

20.
J Med Chem ; 67(3): 1872-1887, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38265413

RESUMO

Glutathione peroxidase 4 (GPX4) emerges as a promising target for the treatment of therapy-resistant cancer through ferroptosis. Thus, there is a broad interest in the development of GPX4 inhibitors. However, a majority of reported GPX4 inhibitors utilize chloroacetamide as a reactive electrophilic warhead, and the selectivity and pharmacokinetic properties still need to be improved. Herein, we developed a compound library based on a novel electrophilic warhead, the sulfonyl ynamide, and executed phenotypic screening against pancreatic cancer cell lines. Notably, one compound A16 exhibiting potent cell toxicity was identified. Further chemical proteomics investigations have demonstrated that A16 specifically targets GPX4 under both in situ and in vivo conditions, inducing ferroptosis. Importantly, A16 exhibited superior selectivity and potency compared to reported GPX4 inhibitors, ML210 and ML162. This provides the structural diversity of tool probes for unraveling the fundamental biology of GPX4 and exploring the therapeutic potential of pancreatic cancer via ferroptosis induction.


Assuntos
Compostos de Anilina , Neoplasias Pancreáticas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tiofenos , Humanos , Linhagem Celular , Neoplasias Pancreáticas/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...